

Canada's Third Generation High Frequency Surface Wave Radar for Persistent Surveillance of the 200 Nautical Mile EEZ

Tony Ponsford¹, Peter W. Moo², Rick Mckerracher³, Zhen Ding², Derek Yee¹, Maureen Ramsden¹

> ¹Formerly with Raytheon Canada ²DRDC Ottawa Research Centre ³Raytheon Canada

NATO Military Sensing Symposium 1 Jun 2017

High Frequency Surface Wave Radar (HFSWR)

Third Generation HFSWR

CIRDDC

- Developed by Raytheon Canada under DRDC's Persistent Active Surveillance of the Exclusive Economic Zone (PASE) Project
- Provides persistent surveillance of surface vessels within Canada's Exclusive Economic Zone (EEZ)
- meets 2009 Industry Canada spectrum management guidelines for operation on a Non-Interfering Basis/Non-Protected basis
- operates with minimal risk of causing harmful interference
- provides enhanced detection and tracking performance for smaller vessels

Coverage of Canada's EEZ

HFSWR electronics shelter and antenna arrays

Electronics shelter

Log periodic transmit array

Vessel classes for evaluation with HFSWR

SMALL VESSEL : Fishing trawler

Tickled Pink Dimensions: 13 m x 6 m

MEDIUM VESSEL: Supply vessel

Panuke Sea Dimensions: 81 m x 16 m

LARGE VESSEL: Ocean-going cargo vessels

Valiant Ace Dimensions: 200 m x 32 m

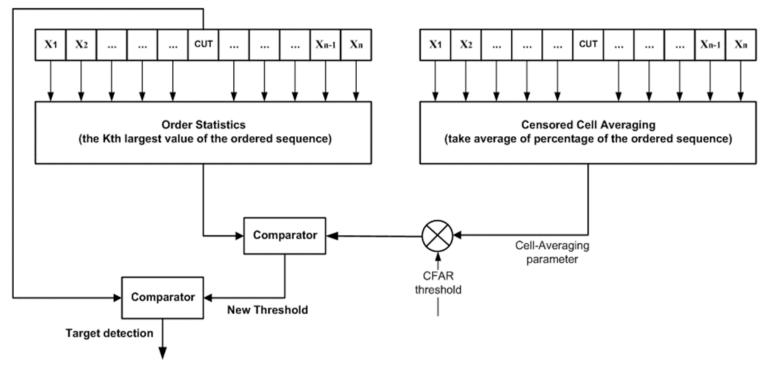
YM Great Dimensions: 279 m x 40 m

HFSWR performance specification

		MAXIMUM DETECTION RANGE (km)		
	VESSEL TYPE	Sea States 0-4* 0-15 knot wind	Sea States 5-6 15-25 knot wind	Sea State 7 25-35 knot wind
		day/night	day/night	day/night
	Small Vessel	230/210	75/75	
	Medium Vessel	300/220	300/220†	180/180†
NEW	Large Vessel	370/260	370/260	370/260

+ These day time and night time detection ranges are approximately double those achieved with first-generation HFSWR technology * Douglas sea scale

Adaptive Aspects of 3rd Generation HFSWR


Detection: Adaptive Constant False Alarm Rate (CFAR)

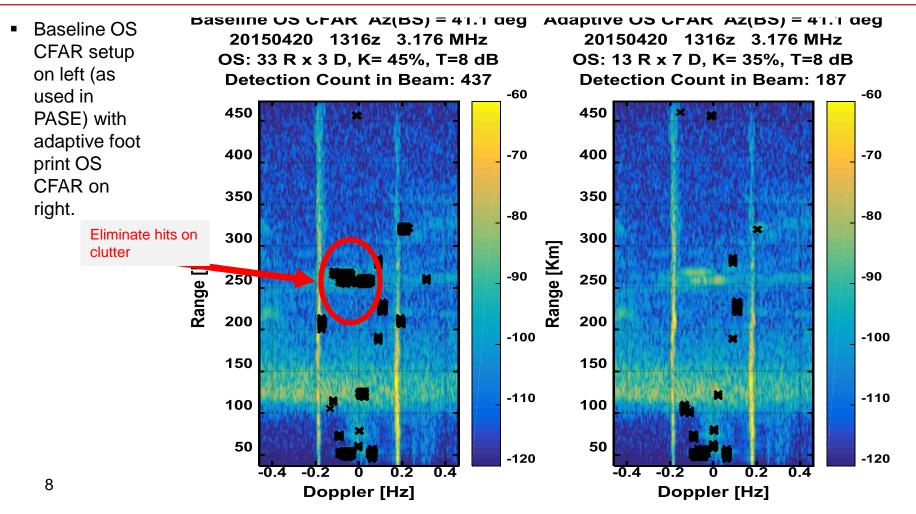
- > Adaptive modifications to Ordered Statistics (OS) CFAR
- Tracking Techniques
 - Feature aided tracking
 - > Adaptive track promotion logic
 - > Enhanced tracking filters
- Spectrum Monitoring
 - > Pro-active frequency decision logic

Hybrid CFAR

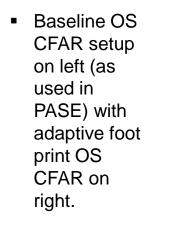
Cell under Test

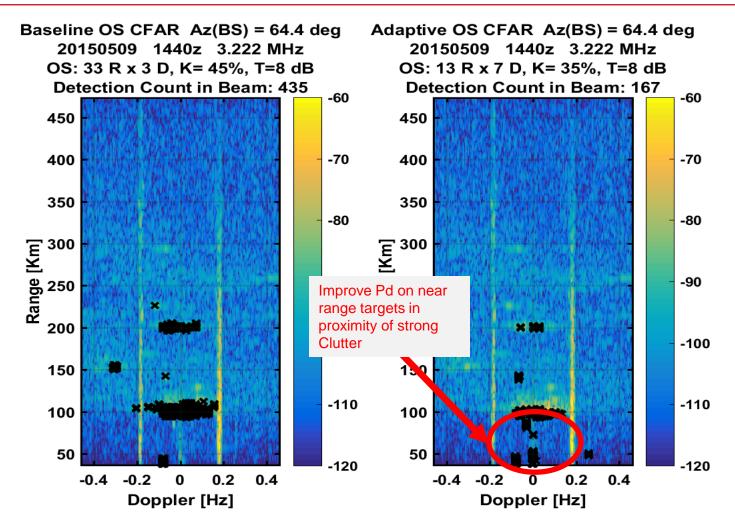
Baseline OS CFAR vs Adaptive OS CFAR

Baseline CFAR

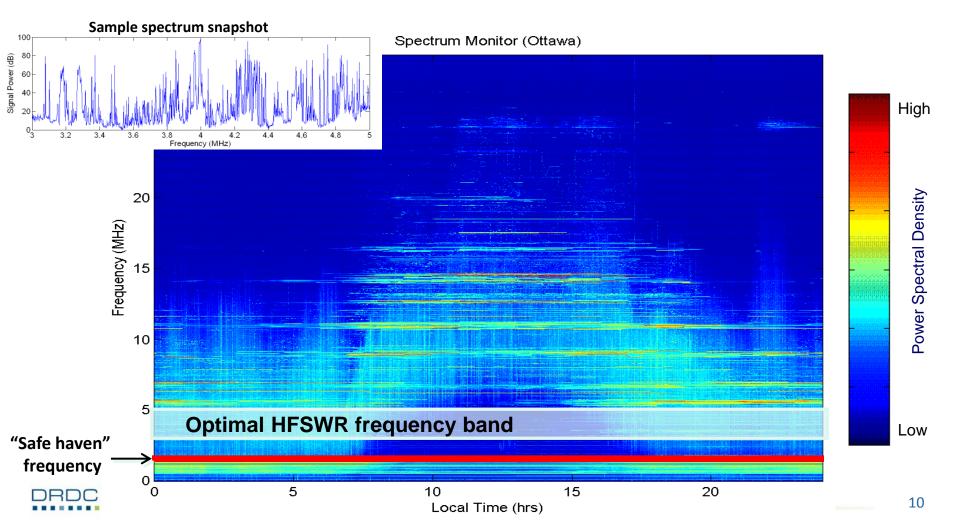

 The baseline PASE OSCFAR window of 3 Doppler cells by 33 Range cells is applied in all areas. OS CFAR has a rank order parameter of Kos of 45% and Threshold of 8 dB.

Adaptive CFAR Technique


- A OSCFAR window of 7 Doppler cells by 13 Range cells is applied in all areas outside of the immediate Bragg clutter regions. OS CFAR parameters with Kos of 35% and Threshold of 8 dB are used.
- The Bragg peak power point is detected based upon expected locations which are deterministic from carrier frequency. All R-D cells within +/- 3 Doppler cells from peak have a 3 Doppler by 33 range cell window with Kos at 65% and Threshold of 12 dB.

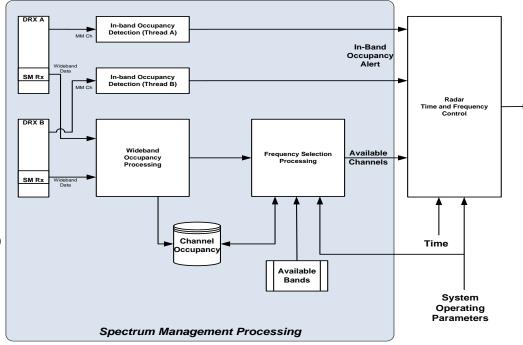

Baseline OS CFAR vs Adaptive OS CFAR

Raytheon Canada Limited


Baseline OS CFAR vs Adaptive OS CFAR

Raytheon Canada Limited

Skywave interference problem

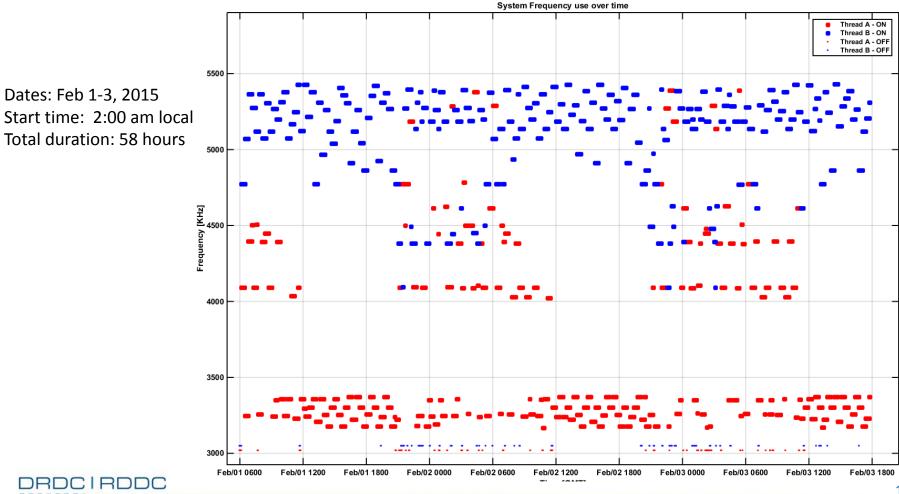


PRISM - Intelligent Spectrum Management

Top level block diagram of Spectrum Management Processing – 3 prime components

- 1)Wide Band Monitoring and Occupancy Determination
 - Spectral processing of the operating band
 - On whenever the Radar is Operational
- 2)In-Band User detection
 - Operates whenever the radar has selected a frequency channel on which to operate or is operating on
- 3) Frequency Decision Logic

 Determines the optimum frequency of operation based upon a set of rules and ofcupancy statistics



PRISM – Design Highlights

- Wideband ADC prove 2.5 MHz of spectral information per sweep (3 to 5.5 MHz)
- Wideband and in-band spectral processing sweep the entire band (3-5.5 MHz) at 240 sweeps/sec with frequency resolution of 500 Hz (Sweep rate is 2 msec).
- Two independent spectrum processing channels with separate antennae provide redundancy
- Past spectral use is monitored and used in ranking of open channels. Time depth of past use is adjustable but is typically 2-4 hours.
- Impulsive noise is removed
- In-band user detection is derived from mis-matched data channels.
- Adjustable thresholds and M of N sweep processing accurately measure past channel use. Thresholds typically set to 6 dB above estimated noise floor.
- Operational bandwidth is controlled by a family of waveforms. Typically 15 to 40 kHz in 5 kHz steps.

WIDE BAND DIGITAL DIRECT CONVERSION PROVIDE A RAPID SWEEP RATE

Example of frequency selection with spectrum management

13

Conclusions

- Third Generation HFSWR provides persistent surveillance of surface vessels in Canada's EEZ.
- Adaptive OS-CFAR generates better estimates of interference levels to reduce false alarms caused by ionospheric interference and clutter.
- Intelligent spectrum management selects radar frequency of operation based on occupancy statistics and frequency decision logic.
- These techniques enhance detection performance in challenging interference environments, while operating on a non-interfering basis with other HF users.

DRDC | RDDC

SCIENCE, TECHNOLOGY AND KNOWLEDGE FOR CANADA'S DEFENCE AND SECURITY SCIENCE, TECHNOLOGIE ET SAVOIR POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

